A Unified Scheme for Resource Protection in Automated Trust Negotiation

Ting Yu
Department of Computer Science
University of Illinois at Urbana-Champaign
tingyu@cs.uiuc.edu

Abstract

Automated trust negotiation is an approach to establish-
ing trust between strangers through iterative disclosure of
digital credentials. In automated trust negotiation, access
control policies play a key role in protecting resources from
unauthorized access. Unlike in traditional trust manage-
ment systems, the access control policy for a resource is
usually unknown to the party requesting access to the re-
source, when trust negotiation starts. The negotiating par-
ties can rely on policy disclosures to learn each other’s ac-
cess control requirements. However, a policy itself may also
contain sensitive information. Disclosing policies’ contents
unconditionally may leak valuable business information or
Jjeopardize individuals’ privacy. In this paper, we propose
UniPro, a unified scheme to model protection of resources,
including policies, in trust negotiation. UniPro improves on
previous work by modeling policies as first-class resources,
protecting them in the same way as other resources, provid-
ing fine-grained control over policy disclosure, and clearly
distinguishing between policy disclosure and policy satis-
faction, which gives users more flexibility in expressing their
authorization requirements. We also show that UniPro can
be used with practical negotiation strategies without jeopar-
dizing autonomy in the choice of strategy, and present crite-
ria under which negotiations using UniPro are guaranteed
to succeed in establishing trust.

1 Introduction

Computer systems traditionally have had closed, cen-
trally managed security domains. Every entity that can take
actions within such a system has one or more identities in
that domain. The system grants or denies an entity’s re-
quests to access certain resources according to its access
control policies and the authenticated identities of the re-
quester. The underlying assumption is that entities in the
system already know each other. Therefore, trust can be
easily established based on each other’s identity. Further,

Marianne Winslett
Department of Computer Science
University of Illinois at Urbana-Champaign
winslett@cs.uiuc.edu

without obtaining a local identity, an entity will not be able
to interact with the system and gain access to the system’s
resources.

As we move towards a globally internetworked infras-
tructure, open systems like the Internet provide an environ-
ment where two or more parties who are virtually strangers
to each other can make connections and do business to-
gether. Such interactions often involve release of sensitive
information and remote access to a party’s local resources.
Mutual trust between the two parties is crucial in such an en-
vironment. Obviously, establishing trust based on identity
is not a feasible approach. Parties may come from differ-
ent security domains and they often will not have any pre-
existing relationship. Therefore, identity information such
as user names and passwords, or identity certificates, is usu-
ally inadequate to determine whether or not a party should
be trusted. Instead, the properties of the participants, e.g.,
employment status, group membership, citizenship, will be
most relevant. Most current security approaches in the In-
ternet are still identity-based, which requires a new client
to pre-register with a service, in order to obtain a local lo-
gin, capability, or credential before requesting that service.
Such practices are usually offered in a “take-it-or-leave-it”
fashion, i.e., the clients either unconditionally disclose their
information to the server, or do not get the service at all.
There is little chance for the clients to apply their own ac-
cess control policies for their information, and decide ac-
cordingly whether the server is trustworthy enough so that
sensitive information can be disclosed.

The approach of automated trust negotiation differs from
traditional identity-based access control systems mainly in
the following aspects:

1. Trust between two strangers is established based on
parties’ properties, which are proven through disclo-
sure of digital credentials. A digital credential is a ver-
ifiable, unforgeable, digitally signed assertion by a cre-
dential issuer about the properties of the parties men-
tioned in the credential. A credential often contains a
public key of one or more of the parties it mentions,
so that those parties can prove that the credential de-

www.manaraa.com

scribes them. Digital credentials can be implemented
via X.509 certificates [8] or private credentials [4], for
example.

2. Every party can define access control policies to
control outsiders’ access to their sensitive resources.
These resources can include services accessible over
the Internet, roles in role-based access control systems,
credentials, policies, and capabilities in capability-
based systems.

3. In the approaches to trust negotiation developed so
far, two parties establish trust directly without involv-
ing trusted third parties, other than credential issuers'.
Since both parties have access control policies, trust
negotiation can employ a peer-to-peer architecture,
where a client and server are treated equally. Instead
of a one-shot authorization and authentication, trust is
established incrementally through a sequence of bilat-
eral credential disclosures. Less sensitive credentials
are disclosed first. Later on, when a certain level of
trust has been established, more sensitive credentials
can be disclosed.

For example, suppose Alice wants to pur-
chase some medicine from an online drug store,
www.cheapmedicine.com. Because this is the first
time that Alice has placed an order at this drug store,
CheapMedicine requires Alice to present a certified pre-
scription and a valid digital credit card. For Alice, both the
prescription and her credit card contain sensitive private
information. So she may in turn require the drug store to
show a valid pharmacy license issued by the Food and Drug
Administration and a membership certificate issued by the
Better Business Bureau.

As we can see from the above example, access control
policies play a key role in trust negotiation. Unlike tradi-
tional decentralized systems, where access control policies
are either publicly visible (such as in traditional file sys-
tems) or completely hidden (such as the configuration of a
firewall for a local network), one’s access control policies
may need to be dynamically disclosed during the process of
trust establishment. In many situations, either because the
trust between two strangers is so limited, or because of the
nature of the ongoing transactions, disclosing the contents
of an access control policy to a stranger may leak valuable
business information or jeopardize one’s privacy. For ex-
ample, suppose that an online store gives a special discount
to employees of its business partners. If the policy, which
contains the list of its business partners, is shown to arbi-
trary requesters for the service, then by merely looking at
the policy, an outsider will know who is partnering with the
store.

"Mobile devices that do not have enough power to negotiate directly
are exceptions to this rule.

To give access control policies the protection they need,
this paper proposes UniPro, a Unified Resource Protection
Scheme for trust negotiation. In section 2, we introduce
desiderata for protection of sensitive access control policies,
and show how previously proposed approaches measure up
to the desiderata. In section 4, we present UniPro and show
that unlike previous proposals, UniPro treats access con-
trol policies as first-class resources, provides fine-grained
control over policy disclosure, and clearly distinguishes be-
tween policy disclosure and policy satisfaction. We also
prove that UniPro generalizes previous proposals, and ex-
plain why in spite of this, we believe that other ways of pro-
tecting policies still have an important role to play in trust
negotiation. Because each party should have wide auton-
omy in how it conducts a trust negotiation—autonomy lim-
ited only by the need to interoperate correctly with another
party during negotiation—section 5 discusses the impact of
UniPro on the theory of strategy interoperability, and the
tradeoff between the greater freedom in policy protection
that UniPro provides and the potential for unnecessary ne-
gotiation failure. We also explain how we expect these un-
necessary failures to be avoided in practice. Section 7 con-
cludes the paper and briefly discusses possible future work.

2 Sensitive Policies and Their Protection

Realistic access control policies tend to contain sensi-
tive information, because the details of Alice’s policy P for
disclosure of credential C' tend to give hints about C’s con-
tents. For example, if there is any information in C' that is
so sensitive that Alice chooses to control its disclosure very
tightly, then it is possible to guess at the nature of that in-
formation by looking at P: is her parole officer allowed to
see C'? Her welfare case worker? The local HIV, cancer, or
mental health clinic? An Enron employees’ stock sale web
page whose policy spelled out exactly who could sell stock
and when might have raised many eyebrows. More gener-
ally, a company’s internal and external policies are part of
its corporate assets, and it will not wish to indiscriminately
broadcast its policies in their entirety.

Example 1. [11] Suppose a web page’s access control pol-
icy states that in order to access documents of a project
in the site, a requester should present an employee ID
issued either by Microsoft or by IBM. If such a policy
can be shown to any requester, then one can infer with
high confidence that this project is a cooperative effort
of the two companies.

Example 2. (Inspired by examples in [2]) Coastal Bank’s
loan application policy says that a loan applicant must
be a customer of the bank who is not on the bank’s
bad-customer list. If this policy is fully disclosed to
a requester, then an outsider can easily learn who the

www.manaraa.com

bank’s bad customers are, which is very sensitive busi-
ness information.

In the first example, the correlation between two con-
straints in a single policy reveals certain properties of the
protected resource. The policy in the second example di-
rectly refers to sensitive local information that should be
protected. One obvious way to prevent such information
leakage is to selectively disclose part of a policy. For in-
stance, in Example 1, we can first ask the requester to show
an employee ID. After receiving the credential, we check
whether it is issued by either Microsoft or IBM. Similarly,
in Example 2, Coastal Bank may only ask for a customer
ID and perform the check on the bad customer list after
the credential is received. However, this approach may
cause a dispute between the two negotiating parties. If we
simply remove those sensitive constraints when disclosing
a policy, Alice may disclose some credentials and believe
that Coastal Bank’s policy has been satisfied, while Coastal
Bank believes the opposite because the sensitive constraints
of the bank’s policy are not satisfied.

A key observation is that since policies may be sensi-
tive and need to be protected from unauthorized disclosure,
there is no essential difference between policies and other
resources, from the point of view of resource protection.
That means that when we protect a sensitive policy, we can
protect it in the same way as any other resource. There-
fore a resource protection scheme that satisfies the follow-
ing desiderata is desirable.

1. When Alice requests access to Bob’s resource R, Bob
may disclose R’s access control policy P to Alice so
that Alice can learn how to gain access to R. Once Al-
ice has disclosed credentials that satisfy P, Bob will
grant Alice access to R. One underlying assumption
in this process is that the two parties have the same
understanding of the semantics of policies. When one
party believes that a policy has been satisfied by dis-
closed credentials, the other party should believe the
same. Otherwise, a dispute may arise even though the
two parties negotiate trust in good faith. We call this
the satisfaction-agreement assumption.

2. Protection of sensitive policies should be as flexible as
for any other kind of resource, allowing any kind of
constraint that is used for protecting other resources.
Because different parts of a policy may be sensitive in
different ways, the policy protection approach should
allow fine-grained control of the protection applied to
each part of a policy.

3. Let R be a resource with access control policy P. The
resource protection scheme should decouple the pro-
tection of R and P. R’s accessibility should only de-
pend on P’s satisfaction. Whether P is disclosed or

not should not affect R’s accessibility. In other words,
the scheme should be able to model the situation where
the client presents the right credentials, satisfies P and
gains access to R, without becoming eligible to see the
actual contents of P during a negotiation. Taken to the
extreme, this will allow servers to offer private services
whose existence and access control policies are never
made public, but whose location and policies can be
pushed privately to selected clients.

4. Based on the disclosures made so far, plus the local re-
sources and their policies, a negotiation strategy sug-
gests the next message that a party should send to the
other negotiation participant [17]. Two strategies are
said to be interoperable if by adopting them respec-
tively, two parties can always establish trust whenever
their policies theoretically allow trust to be established.
The design of interoperable strategies is an important
issue in research on trust negotiation, and the resource
protection scheme should not become an obstacle to
interoperation. The resource protection scheme must
allow a wide variety of practical negotiation strategies
that will interoperate correctly with one another.

5. The resource protection scheme must allow a human-
friendly interface for policy capture and mainte-
nance. We believe that the challenge of policy cap-
ture and maintenance is perhaps the biggest obstacle
to widespread deployment of systems that are open to
access by outsiders. Businesses and individuals must
have confidence in their policies, but policies are hard
to write and will require updates in a changing world.
While these issues are the focus of work by other re-
searchers [5, 3, 12, 13] and are largely outside of the
scope of the current paper, we believe that they must be
kept in mind when designing a unified resource protec-
tion scheme.

3 Related Work

A general introduction to trust negotiation and related
trust management issues can be found elsewhere [16].
As described in detail there, a number of trust negotia-
tion systems and supporting middleware have been pro-
posed and/or implemented in a variety of contexts (e.g.,
[1,2,7,6,9, 10, 11]). Of these, only two [2, 11] support
sensitive access control policies; the remainder assume that
policies can be freely disclosed. We will discuss these two
schemes in detail.

3.1 Service Accessibility Rules

Bonatti and Samarati [2] proposed a framework for reg-
ulating service access and information release on the web.

www.manaraa.com

The framework is targeted at environments where no single
centralized security domain exists. Their framework con-
tains a policy language for access control specification, and
a filtering mechanism to identify the relevant policies for a
negotiation. A service accessibility rule in their model is
composed of two parts: a prerequisite rule and a requisite
rule. Service prerequisite rules state the conditions that a
requester must satisfy before she can be considered for the
service. Service requisite rules state sufficient conditions
for obtaining access to the service, i.e., if a requester satis-
fies a requisite rule, she will be entitled to access the service.
To protect both the server and client’s privacy, the model en-
forces a specific ordering between a service’s prerequisite
and requisite rules. The server will not disclose a requi-
site rule until after the requester satisfies a corresponding
prerequisite rule. Prerequisite rules can contain constraints
that are hidden from strangers.

For instance, to get a special offer from an auto insur-
ance company, suppose that a requester is first required to
show a valid driver’s license which contains basic personal
information such as gender, age and address. Based on such
information, the insurance company will determine whether
the requester is likely to be in a high risk group. How the
company makes its decision should not be disclosed to the
requester. If the requester does not belong to a high risk
group, the insurance company will require disclosure of the
title of the vehicle to verify that the requester is actually the
owner of the insured vehicle. By using the model in [2], we
have the following rules:

1. service_prereqs(special of fer()) <
credential (drivers_license(gender = X, age =
Y, issuer =“DMV”)) | high_risk(gender =
X,age =Y) = false. (The constraint
high_risk(gender = X,age =Y) = falseis
hidden when the prerequisite rule is disclosed.)

2. service_reqs(special_of fer()) <
credential (vehicle title(owner =
X, issuer =“DMV”)),
credential (drivers_license(name =Y)), X =Y.

For simplicity, we have omitted several details in the
above service rules. In particular, issuers of these creden-
tials should be principals that the server trusts, and the re-
quester should authenticate to the owner of each credential.
We would expect the credential issuer to be identified not
by a string, but by a public key lookup. Further, a party
must verify that each credential it receives during trust ne-
gotiation has contents that correspond to its signature. Also,
trust negotiation should be conducted over a secure channel
to prevent certain attacks. We will also omit these important
details in all later examples in this paper.

By explicitly indicating whether a policy is a prerequisite
or requisite rule, a requester can be made to understand the

consequences of disclosing particular credentials. Thus, the
satisfaction-agreement assumption holds in this model.

A prerequisite rule serves two functions at the same time:
controlling the disclosure of the service requisite rules and
controlling access to the service. The scheme does not
decouple policy disclosure with policy satisfaction. Thus,
desideratum 3 is not satisfied. Also, the only way to pro-
tect a sensitive policy is to keep it completely inaccessible
to a requester. This makes it difficult to use service accessi-
bility rules to express complex authorization requirements.
Therefore desideratum 2 is not met. On the other hand, ex-
amples 1 and 2 can be easily expressed using service acces-
sibility rules.

Example 3. McKinley Clinic makes its patient records
available for online access. Let R be Alice’s record.
To gain access to R, R’s policy states that a requester
must either present Alice’s patient ID for McKin-
ley Clinic, or present a California social worker li-
cense and a release-of-information credential issued to
the requester by Alice. Knowing that Alice’s record
specifically allows access by social workers will help
people infer that Alice may have a mental or emotional
problem. Alice will probably want to keep this con-
straint inaccessible to strangers. However, employees
of McKinley Clinic should be allowed to see the con-
tents of this policy. Note that this does not mean that to
satisfy R’s policy, a requester has to work for McKin-
ley Clinic. Any licensed social worker can access Al-
ice’s patient record as long as the social worker has
obtained a release-of-information credential from Al-
ice and pushes the relevant credentials to the server.

In example 3, if the social worker constraint is put in a
prerequisite rule, then it must be made inaccessible to ev-
erybody or accessible to everybody. On the other hand, if
the constraint is put in the requisite rule, then the constraint
on working for McKinley Clinic has to appear in the prereq-
uisite rule, which means that anyone other than Alice who
accesses Alice’s record has to be employed by McKinley
Clinic. In either case, we do not capture the original intent
of the policy.

If the social worker is not working for McKinley Clinic,
how could she know that she should present her social
worker license and the release-of-information credential
from Alice? In practice, we expect that Alice will have dis-
closed a version of R’s policy to the social worker at the
same time as Alice gave out the release-of-information cre-
dential. The social worker can cache both the credentials
and the policy fragment for later use during trust negoti-
ation. More generally, we expect advance disclosure and
caching of policies to be useful whenever policies are invis-
ible to all but a targeted audience.

www.manaraa.com

3.2 Policy Graphs

The concept of policy graphs was proposed by Seamons
et al. [11]. In their scheme, a resource’s access control is
expressed as a policy graph instead of a single policy. A
policy graph is a directed acyclic graph with a single source
node Ny and a single sink node R. The sink node repre-
sents a sensitive resource, while all the other nodes repre-
sent policies. In a policy graph, if there is an edge from
node N; to N; (N; — Nj), then we say IV; is a prede-
cessor of N;. The policy represented by the source node
Ny is not protected, thus can be disclosed to any requester.
All other policies and resources N} can be accessed only
if there exists a directed path (Ny, ..., Nj, Ni), such that
every policy in the subpath (N, ..., N;) is satisfied by the
credentials disclosed by the requester. The essential idea of
policy graphs is to protect access control policies through
gradual disclosure of constraints. For example, suppose a
special insurance promotion is offered to graduate students
whose age is over 25 or whose GPA is over 3.0. The access
control policy graph may be as shown in figure 1.

During a negotiation, if a requester cannot present a valid
student ID proving she is a graduate student, then the insur-
ance company can just terminate the negotiation and does
not need to disclose further constraints (P; and P,). If the
insurance company regards the constraints on age and GPA
as sensitive information, then, to some extent, policy Py in
the source node helps to prevent the disclosure of P; and P»
to arbitrary strangers. Based on this observation, Seamons
et al. claim [11] that by dividing access control require-
ments into layers and organizing them as a policy graph,
one can effectively protect sensitive policies.

However, from the semantics of policy graphs, we can
see that each policy in a policy graph not only controls its
direct successor’s accessibility, but also that of its indirect
successors. In the above example, Py controls when P; and
P, can be disclosed. Further, to gain access to R also re-
quires a requester to satisfy Fp in the first place. Thus,
the concept of policy graphs couples a policy’s satisfaction
tightly with the policy’s disclosure, which makes it diffi-
cult to use policy graphs to express certain access control
requirements.

In example 1, if we treat the policy requiring an em-
ployee ID as the source node Py and regard constraints on
the issuer of the employee ID as its successor P, then any-
one who can produce an employee ID may be able to see the
contents of P, which is obviously not desired. On the other
hand, if we put false in the policy graph as P;’s predeces-
sor, indicating that nobody is allowed to see the contents of
P, then no one will be able to gain access to the project
documents, which is not consistent with the original access
control requirements either. Similarly, policy graphs cannot
be used to capture the intent of examples 2 and 3.

In summary, policy graphs preserve the satisfaction-
agreement assumption: once a policy P is satisfied, a re-
quester knows that either she gains access to R or she
will see the content of one of P’s successors. But pol-
icy graphs couple policy disclosure with policy satisfaction,
which limits their expressiveness and violates desiderata 2
and 3.

4 A Unified Scheme for Resource Protection

The lack of centralized authority on the Internet suggests
that more than one general-purpose language may become
popular for expressing policies. Further, specialized sub-
languages may evolve by, for example, making it easier to
capture and maintain common access control constraints for
certain kinds of resources. Thus our goal is to provide a
general-purpose way to protect policies without dictating
the choice of policy languages, beyond certain minimal re-
quirements described later.

Of course, the examples we give must use a particular
language. We will use variants of the languages adopted
by Seamons et al. and Bonatti and Samarati, the latter of
whom states that “basic predicates constitute the basic lit-
erals that can be used in rules [that govern] services’ ac-
cessibility and [local information] disclosure”. Their lan-
guage includes several kinds of basic predicates. Creden-
tial predicates are used to specify constraints on credentials.
Declaration predicates are used to specify constraints on un-
signed information submitted by a party, such as a preferred
font color. Cert_authority predicates are used to specify the
issuers that a party trusts. State predicates evaluate infor-
mation stored at a party or acquired during a negotiation,
such as the local time of day. Abbreviation predicates al-
low a complex predicate to be defined once, then referred
to thereafter by name. Built-in mathematical predicates can
also be used. Our examples will use only a few of these
types of predicates, and we will not address issues specific
to policy language design, such as the specification of au-
thentication requirements, the permissible use of negation
in policies, and the appropriate handling of (external) func-
tions, such as high_risk, that appear in policies. Further,
we will assume that the underlying language has a formal
definition of what it means for Alice to satisfy a policy—
more precisely, for the set of credentials disclosed by Alice
to satisfy a policy. For convenience, we also assume that the
underlying language includes conjunction and disjunction.
‘We use symbols in the calligraphic font to represent policies
in an underlying policy language: P, P1, Pa, etc. We begin
by reifying policies.

Definition 4.1. A policy definition fakes the form P < P,
where P is a unique ID for this policy and P is a policy in
the underlying policy language. We call P the content of
the policy, denoted as content(P).

www.manaraa.com

P : y.type =“driver’s license”A y.age > 25

N

R: Special Insurance Promotion

S

Py : x.type = “student ID”
A z.status = “graduate student”

~

Ps : z.type =“transcript’A 2.GPA > 3.0

Figure 1. An example of policy graphs.

Definition 4.2. A set C of credentials minimally satisfies P
if no proper subset of C satisfies P.

For example, consider the policy stating that the re-
quester must be a social worker licensed by the state of Cal-
ifornia, and have a release form signed by Alice. The sets
of credentials minimally satisfying P will contain exactly
two credentials.

Definition 4.3. Given policy definition P < P and policy
content P', we say a set C of credentials satisfies (P') A P
if C satisfies (P') A (P). Similarly, C satisfies (P')V P if C
satisfies (P") V (P).

Definition 4.3 allows policy IDs to appear in policy defi-
nitions, to give finer-grained greater control over policy pro-
tection. In the remainder of the paper, policy contents will
be written in this augmented policy language. Definition
4.3 also introduces a very simple type of policy composi-
tion. The definition can be viewed as stating what it means
to satisfy two policies in the underlying language simultane-
ously, or to satisfy one of two policies. This kind of policy
reuse and composition [3, 12, 13] is an effective way to help
users design and maintain their policies. We will use it to
translate policy graphs and service accessibility rules into
UniPro.

Although Definition 4.3 may seem trivial at first glance,
it must be formulated very carefully for underlying policy
languages that allow free variables to appear in policies;
conjoining two policies may force two variables to refer to
the same resource or attribute value. Definition 4.3 is ap-
propriate for the policy languages used by Seamons et al.
and Bonatti and Samarati, but it may need to be tailored to
meet the needs of other policy languages developed in the
future.

For example, let P, be the ID of an airline seat up-
grade policy that requires a requester to be a Platinum
Frequent Flyer with a seat upgrade certificate. Then we
have P, ¢ x.type = “Platinum Frequent Flyer”
A z.issuer = “CheapAir” A y.type = “Seat Upgrade Cer-
tificate” A y.issuer = “CheapAir”. Let P5 be the ID of a

seat upgrade policy that requires the requester to be a gate
agent: P, < z.type = “Employee ID” A z.issuer =
“CheapAir” A z.jobTitle = “Gate Agent”. Now we want
to have a policy ID P whose content says that a requester
needs to either be a gate agent or be a Platinum Frequent
Flyer with an upgrade certificate. There are several possi-
ble ways to get P through policy composition; each of these
ways offers different possibilities for protecting the policies.

1. We may have P <+ P; V P». In this case, P, P;, and
P can have entirely different access control policies.
For example, P may be made freely accessible, so that
all can see P’s internal disjunctive structure. P; may
be accessible to all Platinum Frequent Flyers and air-
line employees, while P; is only accessible to airline
employees.

2. We may have P < content(P;) V content(Pz). In
this case, anyone who can satisfy P’s access control
policy—say, all Platinum flyers—will be able to see
the full policy for seat upgrades. This may be undesir-
able, as all Platinum passengers may beg the gate agent
for free upgrades, once they learn about this policy.

3. We may also have P <> content(Py) A Ps. In this
case, anyone who satisfies P’s policy can learn the
standard way of obtaining an upgrade. The fact that
gate agents can perform a free upgrade can be hidden
from everyone but airline employees, if desired.

Definition 4.4. R : P denotes that P is the ID of the access
control policy for resource R. A requester is entitled to gain

access to R only if she has disclosed credentials that satisfy
P.

Under UniPro (Unified Resource Protection Scheme),
each resource R is protected by exactly one policy (R : P),
and each policy ID P has exactly one policy definition
P <« P. Further, the fact that R is protected by a policy
with a particular ID (R : P) is freely disclosable to all, be-
cause P and R are both just resource IDs, which in practice

www.manaraa.com

are random numbers conveying no new information to the
recipient. In UniPro, policies can be protected by policies
which can be protected by policies and so on, but the chain
of protection must bottom out with a policy that is either al-
ways hidden or always disclosable?. These special policies
have IDs true and false, their contents are always and never
satisfied, respectively, and they are freely disclosable.
Let us revisit the examples from section 2.

Example 1. The access control policy for the project doc-
uments R is R : P, where P < z.type = “Em-
ployee ID” A P, and P, < z.issuer = “Microsoft”
V z.issuer = “IBM”. We also have P : true and
Py : false. Since P’s policy is always satisfied, any
requester can see P’s content. However, P;’s policy is
never satisfied, which means P;’s content should not
be shown to anybody. Assume Alice is an employee
of Sun Microsystems and wants to access the project’s
documents. After P’s content has been disclosed, she
may disclose her Sun employee ID. But since Alice
knows that P refers to an inaccessible policy P; (be-
cause P; : false is freely disclosable), she knows
that her employee ID may not be enough to satisfy
P. Therefore, the satisfaction-agreement assumption
holds in this situation.

Example 2. Coastal Bank’s loan application policy defini-
tion is P < z.type = “Customer ID” A z.issuer =
“Coastal Bank” A P;. We also have P; < z.ID ¢
BadCustomerList, P : true, and Py : false. After
a loan applicant discloses her Coastal Bank customer
ID, since P; is a conjunct in the content of P, and the
content of P; will never be disclosed, she should wait
for Coastal Bank to decide whether P is satisfied in-
stead of taking it for granted that she is qualified for
the loan.

Example 3. Let R be Alice’s patient record. We have

1. R: P.

2. P& PV P, and P : true. Everyone can see
that there are two ways to get access to Alice’s

record.
3. P, & z.type = “patient ID” A z.name =
“Alice” A z.issuer = “McKinley Clinic”, and

P, : true. Everyone can see that Alice can ac-
cess her own records.

4, P, <+ x.iype = “Professional License”
A z.profession = “Social Worker”
A z.issuer = “State of California” A y.type =
“Medical Records Release” A y.issuer =

21f a set of policies contains non-trivial cycles, i.e., if to view a non-
trivial policy P, Alice must first satisfy P, then there is an equivalent set
of policies with no cycles.

“Alice” A y.institution = “McKinley Clinic”.
Alice can also authorize social workers to look
at her records.

To prevent the inappropriate disclosure of P»’s content,
we also have P» : P3, P3 < z.type = “Employee
ID” A z.issuer = “McKinley Clinic”, and P; : true.
Then everyone can see that McKinley employees can
see another way to gain access to Alice’s records.

Next we analyze UniPro according to the first three
desiderata discussed in section 2.

1. In UniPro, if a requester submits credentials that sat-
isfy a resource’s policy, then she is entitled to access
that resource. On the other hand, because of the ex-
plicit appearance of policy IDs in a policy, a requester
will be aware of parts of a policy that have not been
disclosed yet. Without seeing those parts, she will not
always be able to tell whether the policy has been sat-
isfied by the credentials she has disclosed. Therefore,
there will be no disagreement between two parties over
whether a policy has been satisfied, given that they
both understand the semantics of the underlying pol-
icy language.

2. UniPro explicitly protects policies in the same way as
other resources. Users can design policies that pro-
vide fine-grained control of sensitive policies’ disclo-
sure. In fact, by looking at a resource’s policy, R : P,
we cannot tell whether R is a policy, a credential or a
service.

3. The semantics of UniPro explicitly separates a policy’s
satisfaction from its disclosure. If a resource is pro-
tected by a policy P, then as long as P is satisfied, R
can be accessed. Whether P has been disclosed or not
is irrelevant to R’s disclosure.

Regarding desideratum 5, probably no policy language
with roots in mathematical logic will ever be regarded as
user-friendly by the average corporate programmer. We
view the previously proposed policy languages for trust ne-
gotiation as efforts to put a firm semantic foundation un-
der trust negotiation, and to understand the requirements
for policy languages for trust negotiation. They have served
admirably in this capacity, and UniPro builds directly upon
them. More generally, we view UniPro not as a replace-
ment for other policy languages, but rather as an underly-
ing foundation that other, more programmer-friendly, pol-
icy capture tools can be hooked into. A programmer can
use the friendliest capture tool with sufficient modeling
power for a new/updated policy, and then the captured pol-
icy can be translated into UniPro-style policy definitions in
a well-known, general-purpose policy language, to provide
portability and mutual comprehension of policies written by

www.manaraa.com

strangers. To show the promise of this approach, the fol-
lowing two theorems show how UniPro generalizes service
accessibility rules and policy graphs.

Theorem 4.1. Given a policy graph G protecting resource
R, there is a set of UniPro policy definitions with the same
semantics as G. More precisely, if R’s UniPro policy is
satisfied by a set of disclosed credentials, then there exists a
path from the source node of G to an immediate predecessor
of R in G, such that every policy along the path is satisfied
by the set of disclosed credentials. (|

One can also present a stronger version of Theorem 4.1,
to guarantee that the policy content P associated with a par-
ticular node in G is not disclosed unless all the policies as-
sociated with nodes along one path from the source of G
to a node with content P have been satisfied. However, the
statement of such a theorem necessarily relies on the trans-
lation of G into UniPro policies, which we do not present
here due to space limitations. This omission aside, theo-
rem 4.1 shows that UniPro is at least as expressive as policy
graphs. As shown in Examples 1 and 2 in section 2, there
are realistic cases whose access control requirements cannot
be expressed with policy graphs. Thus UniPro generalizes
policy graphs. However, as mentioned earlier, policy graphs
or another graphical interface to an underlying policy lan-
guage can be used as a friendly interface on top of UniPro
for capturing and maintaining access control requirements
that do not require all of UniPro’s modeling power.

Theorem 4.2. Given a service prerequisite rule
service_prereqs(s) < qi,---,qn | DP1y---,Pm and
a service requisite rule servicereqs(s) <+ qi,---,q

where q; (1 < i <n),p; (1 <i<m), andq, (1<i<1)
are all predicates, there is a set of UniPro policy definitions
with the same semantics as the service accessibility rules.
More precisely:

1. Service s’s UniPro policy is satisfied by a set of creden-
tials disclosed by Alice if and only if those credentials
satisfy qu N -+~ ANqn, DL A=+ Npm, and qi N -+ - A gj.

2. If the contents of any ¢;,1 < i < t, are disclosed to
Alice, thenqi N\ --- N qn Ap1 A --- N pm, are satisfied
by credentials Alice has already disclosed.

3. The contents of p;, 1 < i < m, are never disclosed.
O

As shown by Example 3 in section 2, there are realistic
access control requirements that cannot be expressed using
service accessibility rules. Thus UniPro generalizes service
accessibility rules.

S Negotiation Strategies for UniPro

Ideally, trust should be established whenever the two par-
ties’ access control policies theoretically allow. Yu et al.
[17] studied strategy interoperability under the assumptions
that access control policies can be freely disclosed and au-
tonomy in the choice of negotiation strategy is important
to parties. They designed a set of strategies that guarantee
that two parties can always establish trust whenever theo-
retically possible, if each party adopts any strategy in the
set. In this section, we extend concepts proposed in [17] to
study strategy interoperation when using UniPro to protect
sensitive policies.

Different parties will have different requirements for
how much computation they are willing to do, how freely
they disclose resources, and how interested they are in ex-
tracting information from the other party. In a free-wheeling
place with decentralized control such as the Internet, parties
should be free to choose whatever strategy meets their re-
quirements. For example, parties running on portable thin
clients, such as PDAs and smart cards, which only have
low-end CPUs and limited memories, might prefer strate-
gies that require little computation and memory resources
but make unnecessary disclosures, while servers with suffi-
cient computation and memory resources might like strate-
gies that can carefully analyze the ongoing negotiation and
only disclose minimal information to ensure a successful
negotiation. In this section, we present two strategies for
UniPro, based on a simple agreement about message for-
mat called the UniPro protocol.

The UniPro protocol allows three types of disclosures:
one can disclose a resource, a policy ID or a relationship
between a policy and a credential (a variable assignment).
For convenience, we assume that the resource IDs used by
the two parties are disjoint. For a resource disclosure,

1. [17] If the resource is a service, then the other party
gains access to that service.

2. [17] If the resource is a credential, then the contents
of the credential are sent to the other party. (In prac-
tice, credential content verification, parsing of the cre-
dential into a set of statements in the policy language,
and any required challenge/response for authentication
will take place at this point, but we do not discuss this
further in this paper.)

3. [17] If the resource is a policy, then the policy defi-
nition is sent to the other party. In other words, the
content of the policy is disclosed.

As one would expect, in a policy ID disclosure, a disclosure
of the form R : P is sent to the other party, where R is a
resource ID and P is the ID of the policy for R. Note that

www.manaraa.com

a policy ID disclosure does not disclose the content of the
policy, only the policy ID.

A variable assignment disclosure is of the form P.x =
C, where P is a policy ID, z is a variable in content(P)
and C is a credential ID that is potentially relevant (defined
below) to P. If P is one of Bob’s policies, then Alice sends
P.x = C to indicate that her credential C may be in a set
of credentials that minimally satisfies content(P), when C
is assigned to be the value of variable z in content(P). In-
tuitively, policy ID disclosures link policies to resources,
while variable assignment disclosures link credentials to
policies.

Definition 5.1. Suppose P <+ P. Let S, contain a subset
of the policy IDs appearing in P, and let S¢ be a set of
credentials. Let P' be the result of replacing by true all the
policy IDs in P that also appear in Soo. If P' is satisfied by
Swo, then we say 81 U Ss is an indirect solution set for P.
If no proper subset of Soo or S¢ has this property, then we
say Soo U S¢ is a minimal indirect solution set for P.

Definition 5.2. Suppose P : P, and let C be a credential
ID. If C belongs to a minimal indirect solution set to P,
then we say C' is potentially relevant to P.

In trust negotiation using the UniPro protocol, every
message that a party Alice sends is a set of the disclosures
defined above. An empty message is called a failure mes-
sage, and indicates that a party has decided to terminate the
negotiation. Further, to guarantee the safety and timely ter-
mination of trust negotiation no matter what policies and
resources the parties possess, the UniPro protocol requires
the negotiation strategies used with it to enforce the follow-
ing three conditions throughout negotiations:

1. [17] No duplicate disclosures can be made.

2. [17] A resource cannot be disclosed unless its access
control policy has been satisfied.

3. A variable assignment P.z = C can be disclosed only
after P < content(P) has been disclosed.

A trust negotiation is triggered when Alice sends a re-
quest to access one of Bob’s resources R. Upon receiving
the request, Bob calls his negotiation strategy, then sends
to Alice the disclosure message it outputs. Similarly, upon
receiving Bob’s message, Alice passes the message to her
strategy and sends Bob the message suggested by her strat-
egy. This process continues until either Alice finally satis-
fies R’s policy and gain access to R or one party sends an
empty message and terminates the negotiation.

UniPro allows portions of the content of a resource’s ac-
cess control policy to be hidden from a requester. To pro-
tect privacy, a requester may not want to disclose all her
credentials in an attempt to satisfy those hidden constraints.

So Alice may possess the right credentials to satisfy the re-
source’s policy, but the negotiation may fail, because she
cannot see the contents of a policy. This is an acceptable
outcome of a negotiation—a reasonable tradeoff between
privacy and access. Alice may reasonably believe that if
she could gain access, she would already have obtained and
cached the hidden portions of the access control policy, as
mentioned in section 4. On the other hand, parties will want
to adopt strategies that will guarantee a successful negoti-
ation given “sufficient” policy visibility. Thus, when we
design negotiation strategies for UniPro, there is a tradeoff
between establishing trust and preserving one’s privacy.

Definition 5.3. Let R be a resource of Bob’s that Alice re-
quests to access. If there exists a sequence of resource
disclosures (Ry,..., Ry, = R) such that for all R;, i =
1,...,k, R;’s access control policy is satisfied by creden-
tials in {Ry, ..., R;_1}, then we say the sequence is a safe
disclosure sequence culminating in R’s disclosure.

Note that if a resource R; is disclosed in a safe disclosure
sequence, that does not imply that ;’s access control policy
is also disclosed in the sequence.

Definition 5.4. [17] A strategy is a function s with input
parameters (my1,...,my), L and R, where R is the ID of
the resource whose access request triggered trust negotia-
tion, (ma,...,my) is a sequence of nonempty disclosure
messages not containing R, and L is a set of resource IDs
and policies. The output of s is a disclosure message m.

Definition 5.5. [17] Let s; and ss be two strategies
adopted by Alice and Bob, respectively. Let R be an ar-
bitrary resource of Bob’s that Alice requests to access. If
Alice can always gain access to R whenever there exists
a safe disclosure sequence culminating in R’s disclosure,
then we say s, and sy are strongly interoperable.

Since a policy may be hidden completely from a re-
quester, under certain situations strong interoperability will
require a party to disclose all its credentials whose policies
have been satisfied, which may severely jeopardize one’s
privacy. For example, let P be one disjunct in R’s policy.
If P : false has been disclosed, then before Alice can give
up on obtaining access to R, strong interoperability will re-
quire her to send her freely disclosable library card, AAA
membership card, high school diploma, etc., to Bob in an at-
tempt to gain access. Strongly interoperable strategies rep-
resent one extreme that concentrates only on establishing
trust, with few considerations for privacy.

Definition 5.6. Let (R, ..., R, = R) be a safe disclosure
sequence culminating in R’s disclosure, and suppose R : P.
We say the sequence is visible if the following two condi-
tions are satisfied:

www.manaraa.com

1. Either P < true or there exists k, 0 < k < n —1,
such that Ry, = P, i.e., R’s policy is disclosed in the
sequence.

2. Let P & P. There exists a minimal indirect solution
set S for P such that for every policy ID P; in S, pol-
icy P; is disclosed in the sequence and content(P;) is
satisfied by credentials disclosed in the sequence.

We say the sequence is consistently visible if every prefix of
the sequence is also visible.

If there is a consistently visible disclosure sequence cul-
minating in the disclosure of the requested resource R, then
two strangers will be able to find out at least one way to es-
tablish trust, without being stymied by hidden constraints.
This enables a good balance between trust establishment
and privacy protection.

Definition 5.7. Let s1 and sa be two strategies adopted by
Alice and Bob, respectively. Let R be an arbitrary resource
of Bob’s that Alice requests to access. If Alice can always
gain access to R whenever there exists a safe, consistently
visible disclosure sequence of Alice’s and Bob’s resources
that culminates in R’s disclosure, then we say that s1 and
so are weakly interoperable.

Next we present two strategies that work with UniPro
policies. The first one is called the Unified Eager Strategy,
and it does not carefully analyze what disclosures are useful
for establishing trust. Instead, it sends all safe disclosures to
the other party. If two parties both adopt this strategy, then
strong interoperability can be achieved. Pseudocode for this
strategy is shown in figure 2(a).

The second strategy is called the Unified Relevant Strat-
egy. It does analyze the ongoing negotiation and tries to
identify those disclosures that are relevant to the current
negotiation. Further, it does not try to satisfy undisclosed
policies. Only weak interoperability can be achieved if this
strategy is adopted by one of the negotiation participants.
Definition 5.8 formally defines the concept of relevance.
Figure 2(b) shows the pseudocode of the Unified Relevant
Strategy.

Definition 5.8. Given a resource R, we define resources
that are syntactically relevant fo R as follows.

1. R is syntactically relevant to R.

2. Let P' be a policy ID. If P' appears in content(P)
and P is syntactically relevant to R, then P' is syntac-
tically relevant to R.

3. Let P be a policy syntactically relevant to R. If cre-
dential C is potentially relevant to P, then C is syn-
tactically relevant to R.

Syntactic relevance traces credentials through the chains
of policies leading back to R. Therefore, a policy may be
syntactically relevant to R even if its ID does not appear
in R’s policy. Similarly, a credential may be syntactically
relevant to R even if it is not potentially relevant to R’s
policy.

Theorem 5.1. The Unified Eager Strategy is strongly inter-
operable with itself. O

Theorem 5.2. The Unified Relevant Strategy is weakly in-
teroperable with itself. O

Theorem 5.3. The Unified Eager Strategy and the Unified
Relevant Strategy are weakly interoperable. O

By combining the two strategies given in figure 2, we can
obtain a new Combined Strategy that is strongly interoper-
able with itself but does not make as many disclosures as
the Unified Eager Strategy. Upon receiving a new message
from the other party, the Combined Strategy first calls the
Unified Relevant Strategy. If the message returned by the
Unified Relevant Strategy is not empty, then the message is
sent to the other party. Otherwise, the Combined Strategy
sends the message suggested by the Unified Eager Strategy.
Since the Combined Strategy does not send an empty mes-
sage unless the Unified Eager Strategy suggests to do so, it
is not hard to prove that the combined strategy is strongly
interoperable with itself.

6 Discussion

In this section we discuss several issues which are
closely related to UniPro and its deployment and are rel-
evant for future trust negotiation research.

Policy design and analysis Access control policies are a
cornerstone of trust negotiation. Organizations and in-
dividuals must have faith in their resources’ policies,
or they will be afraid to open their systems to access
from outside. To instill confidence in policies, the per-
son in charge of the security of a resource will need
a policy editor, access to canned, composable, and
reusable policies (e.g., the definitions of a non-profit
company, a full-time student at an accredited univer-
sity, a minority-owned business); and ways to ana-
lyze, understand, and test policies before they are de-
ployed. Security managers will want tools for regres-
sion testing (comparison of policy coverage under old
and new sets of policies), consistency checking, and
comparison of policies against higher-level specifica-
tions (when available). Without such tools, many orga-
nizations will be unable to change their security poli-
cies for fear that alterations will create security holes

www.manaraa.com

The Unified Eager Strategy (M, L, R)
M = (m1,...,myg): asequence of safe disclosure messages.
L: the local resources of this party.
R: the resource to which access was originally requested.
Output:
A message m.
Pre-condition:
R has not been disclosed and my, is not a failure message.

D= U15i5k mis;

m=0;

For every resource R’ € L
m =mU{R' : P'}, where P’ is R’s access control policy;
if P! is satisfied by the credentials in D — L

thenm = mU {R'};

For every variable x in every policy P € (D — L)

for every credential C € L
setm =mU{P.xz=C}
m=m — D,
return {m};

(a) Pseudocode for the Unified Eager Strategy

The Unified Relevant Strategy (M, L, R)
M = (mi,...,myg): asequence of safe disclosure messages.
L: the local resources of this party.
R: the resource to which access was originally requested.
Output:
A message m.
Pre-condition:
R has not been disclosed and myp, is not a failure message.

D= U15i5k mi;
m=0;
For every resource R’ € L that is syntactically relevant to R
m =mU {R' : P'}, where P’ is R'’s access control policy;
if the credentials in D — L satisfy P’, under the variable bindings for P’ given in D,
thenm =m U {R'};
For every policy P € (D — L) that is syntactically relevant to R,
for every set S1 of policy IDs, set S2 = {C1,...,Cr} of credentials in L, and
setxy = C1,...,xn = Cyp of variable bindings,
such that S1 U S2 is a minimal indirect solution set for P under those variable bindings,
letm =mU{Px; =Cq,...,Pxn =Cpr};
m=m— D;
return {m};

(b) Pseudocode for the Unified Relevant Strategy

Figure 2. Two negotiation strategies for UniPro.

www.manharaa.com

that leave them vulnerable. These concerns arise in au-
tomated trust negotiation and also in the growing num-
ber of other computational realms that rely on policies.

Cached policies In UniPro, a relevant policy might not
be disclosable during trust negotiation. Therefore the
target audience for such policies needs to get them
through off-line channels and cache them in their lo-
cal hosts. In our discussion on strategies so far, we
assume no cached policies are used during trust negoti-
ation. When such an assumption is relaxed, it becomes
important to study how to identify a cached policy that
is related to an ongoing trust negotiation, when to dis-
close a cached policy, and what impact it will have on
strategy interoperability.

Privacy protection The motivation of UniPro is to pre-
vent unauthorized information flow during policy dis-
closures. Another form of information leaks happens
when Alice responds to Bob’s request. For example,
suppose Bob tells Alice that, in order to gain access to
a resource R, Alice needs to show her driver’s license
to prove her age is over 21. In a typical trust negotia-
tion, if Alice can satisfy this policy, she may respond
by telling Bob the access control policy for her driver’s
license. Otherwise, she will send a failure message
and terminate the negotiation. However, in this case,
by simply observing Alice’s response, Bob may infer
whether Alice’s age is over 21, without really gain-
ing access to her driver’s license. Winsborough and
Li [15, 14] proposed the concept of attribute acknowl-
edgment policies (ack policies) to prevent such infor-
mation leaks. An ack policy controls when a party can
inform others whether or not he/she possesses a certain
attribute. Therefore, a credential’s access control pol-
icy will not be disclosed until the corresponding ack
policy has been satisfied. In this way, ack policies pro-
vide one layer of protection for sensitive access control
policies, although the protection is not as flexible as re-
quired to satisfy desideratum 2. A related question is
whether UniPro can be used to achieve the goals of ack
policies. Alice can use a false access control policy to
hide the fact that she does not possess a particular cre-
dential C. She could also use a more complex access
control policy to ensure that the fact that she does not
possess C' is only revealed to authorized parties. How-
ever, access control policies do not provide as flexi-
ble means of protecting this kind of information as ack
policies do. Since the protection provided by UniPro
and ack policies is largely orthogonal, it will be inter-
esting to investigate how to integrate the two schemes
without sacrificing local autonomy in the choice of ne-
gotiation strategies.

7 Summary and Conclusion

To give access control policies the protection they need
during trust negotiation, we have proposed UniPro, a Uni-
fied Resource Protection Scheme. The development of
UniPro was guided by a set of desiderata for protection of
sensitive access control policies, including the need for two
parties to be able to agree on whether a certain set of cre-
dentials satisfies a particular policy, protection as powerful
as that provided for any other resource, the decoupling of
the protection provided for a policy P and the protection
that P provides for another resource R, the ability to sup-
port human-friendly front ends for policy capture and main-
tenance, support for a wide variety of interoperable trust
negotiation strategies, and fine-grained control over what
parts of a policy are protected in what manner. UniPro prov-
ably generalizes previous approaches to protecting policies
in trust negotiation, and moves us closer to satisfying the
desiderata. Further, UniPro does not dictate a particular
choice of policy language, allowing UniPro to take advan-
tage of human-friendly interface tools for policy capture and
maintenance as such tools are developed, and also to take
advantage of advances in the design of policy languages for
trust negotiation.

While UniPro provides new levels of freedom in policy
protection during trust negotiation, such as the ability to of-
fer a service whose existence and policies are known only
to preselected clients, this freedom comes at a price. In par-
ticular, a trust negotiation between Alice and Bob can fail
because Alice cannot see one of Bob’s policies and is un-
willing to blindly disclose her credentials in the hope of
satisfying a policy that she cannot see. UniPro exposes
this tradeoff, allowing policy designers to choose between
greater privacy for their policies and an increased chance of
negotiation failure. Where greater privacy is chosen, Bob or
a third party may decide to push a hidden policy to Alice be-
fore she ever tries to access Bob’s service, so that Alice can
cache the policy and know how to access Bob’s service in
the future. We have extended the concept of strategy inter-
operability to apply to trust negotiations under UniPro, and
proved interoperability guarantees for two new negotiation
strategies that are compatible with UniPro. Our future work
includes a closer investigation of interoperable strategies for
UniPro.

Acknowledgments

This research was sponsored by DARPA through Space
and Naval Warfare Systems Center San Diego grant num-
ber N66001-01-18908 (BYU) and AFRL contract numbers
F33615-01-C-1805 (BYU) and F30602-97-C-0336 (NAI
Labs). We also thank the anonymous reviewers for their
helpful comments.

www.manaraa.com

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

[14]

[15]

M. Blaze, J. Feigenbaum, and A. D. Keromytis. KeyNote:
Trust Management for Public-Key Infrastructures. In Secu-
rity Protocols Workshop, Cambridge, UK, 1998.

P. Bonatti and P. Samarati. Regulating Service Access and
Information Release on the Web. In Conference on Com-
puter and Communications Security, Athens, Nov. 2000.

P. Bonatti, S. Vimercati, and P. Samarati. A modular ap-
proach to composing access control policies. In ACM Con-
ference on Computer and Communication Security, Athens,
Greece, Nov. 2000.

S. Brands. Rethinking Public Key Infrastructures and Digi-
tal Certificates: Building in Privacy. The MIT Press, 2000.
D. Damianou, N. Dulay, E. Lupu, and M. Sloman. The
Ponder Policy Specification Language. In 2nd International
Workshop on Policies for Distributed Systems and Networks,
Bristol, UK, Jan. 2001.

A. Herzberg, J. Mihaeli, Y. Mass, D. Naor, and Y. Ravid.
Access Control Meets Public Key Infrastructure, Or: As-
signing Roles to Strangers. In IEEE Symposium on Security
and Privacy, Oakland, CA, May 2000.

A. Hess, J. Jacobson, H. Mills, R. Wamsley, K. Seamons,
and B. Smith. Advanced Client/Server Authetication in
TLS. In Network and Distributed System Security Sympo-
sium, San Diego, CA, Feb. 2002.

International Telecommunication Union. Rec. X.509 - In-
Sformation Technology - Open Systems Interconnection - The
Directory: Authentication Framework, Aug. 1997.

W. Johnson, S. Mudumbai, and M. Thompson. Authoriza-
tion and Attribute Certificates for Widely Distributed Ac-
cess Control. In IEEE International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises,
1998.

N. Li, W. Winsborough, and J. Mitchell. Distributed Cre-
dential Chain Discovery in Trust Management. In Confer-
ence on Computer and Communication Security, Philadel-
phia, PA, Nov. 2001.

K. Seamons, M. Winslett, and T. Yu. Limiting the Disclosure
of Access Control Policies during Automated Trust Negoti-
ation. In Network and Distributed System Security Sympo-
sium, San Diego, CA, Feb. 2001.

D. Wijesekera and S. Jajodia. Policy Algebras for Access
Control - The Propositional Case. In ACM Conference on
Computer and Communication Security, Philadelphia, PA,
Nov. 2001.

D. Wijesekera and S. Jajodia. Policy Algebras for Access
Control - The predicate Case. In ACM Conference on Com-
puter and Communication Security, Washington, DC, Nov.
2002.

W. Winsborough and N. Li. Protecting Sensitive Attributes
in Automated Trust Negotiation. In ACM Workshop on Pri-
vacy in the Electronic Society, Washington, DC, Nov. 2002.
W. Winsborough and N. Li. Towards Practical Automated
Trust Negotiation. In 3rd International Workshop on Poli-
cies for Distributed Systems and Networks, Monterey, Cali-
fornia, June 2002.

(16]

(17]

M. Winslett, T. Yu, K. Seamons, A. Hess, J. Jarvis, B. Smith,
and L. Yu. Negotiating Trust on the Web. [EEE Internet
Computing Special Issue on Trust Management, 6(6), Nov.
2002.

T. Yu, M. Winslett, and K. Seamons. Interoperable Strate-
gies in Automated Trust Negotiation. In ACM Conference on
Computer and Communication Security, Philadelphia, PA,
Nov. 2001.

www.manaraa.com

